_
-
Q
Ø
Ν
0
Q
÷
⊐
Ω
≥
₹
≥
>
Q
Ξ
_
4

STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Artificial intelligence		ode 010334571010331100			
Field of study Information Engineering	Profile of study (general academic, practical) (brak)	Year /Semester 4 / 7			
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	part-time				
No. of hours		No. of credits			
Lecture: 16 Classes: - Laboratory: 12	Project/seminars:	5			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
(brak) (brak)		rak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		5 100%			
Technical sciences		5 100%			

Responsible for subject / lecturer:

Ph.D. Eng. Adam Meissner email: Adam.Meissner@put.poznan.pl tel. 61 665 37 24 Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Student has an elementary mathematical knowledge including algebra, analysis, logic and probability theory; she/he has basic skills in algorithm design and implementation.
2	Skills	Student is able to find information from professional literature, databases and other sources; he/she can also integrate and correctly interpret the gained information and then to conclude and formulate his/her own opinions; a student is able to work individually and in a team; he/she can estimate a time for a given task and prepare a schedule for it.
3	Social competencies	Student understands the necessity and knows possibilities of lifelong learning and improving the professional, personal and social competencies; a student realises the responsibility for his/her work done individually or in a team; he/she is also ready to accept the rules of group work.

Assumptions and objectives of the course:

providing students with the scope of artificial intelligence - basic problems, their models and methods of solving; presentation of exemplary applications of artificial intelligence, particularly in contemporary technology.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has theoretical and practical knowledge on algorithm design and analysis, on abstract data structures and their implementation and on computationally hard problems [K_W04]
- 2. Student has theoretical and practical knowledge on artificial intelligence and on expert and multi-agent systems [K_W09]

Skills:

- 1. Student is able to create engineer work documentation and to prepare text with the work result discussion [K_U03]
- 2. Student is able to apply programming environments and platforms to develop, execute and test simple programs implemented in imperative, object-oriented and declarative languages [K_U10]
- 3. Student is able to design and develop a simple expert or multi-agent system [K_U13]

Social competencies:

- 1. Student realises the social role of being a technical graduate, in particular he/she understands the need to convey his/her professional knowledge to the others in an understandable way, also using mass media [K_K06]
- 2. Student understands the importance of a thorough design of a given project, respecting notation standards, using a proper language and keeping deadlines [K_K07]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Lecture: written exam consisting of theoretical questions and simple problems to solve.

Labs: rating a student's activity during exercises; evaluation of the progress on the semestral task including the delivery of reports on time.

More than 50% points are necessary for passing the exam and labs.

Course description

Lecture. Introduction to artificial intelligence. Applications of artificial intelligence in contemporary technology. Knowledge representation and knowledge processing - first-order logic and its subclasses. Solving problems by searching. Constraint satisfaction problems. Basis of automated reasoning. Expert system and rule-based systems. Incompleteness of knowledge - nonmonotonic and temporal reasoning. Truth maintenance systems. Machine learning. Neural networks.

Course update 2017: applications of artificial intelligence in contemporary technology, rule-based systems.

Labs. Every student obtains one semestral task concerning expert or rule-based systems, simple reasoning systems, constraint satisfaction problems, program transformation, two-person games or logic puzzles.

Teaching methods:

- lectures supported by slides and examples presented on the table
- laboratories a usage of tools enabling students to perform taksks at home, reviewing student reports with a discussion of common errors.

Basic bibliography:

- 1. A Brief Introduction to Neural Networks, Kriesel D., University of Bonn, 2007
- 2. Artificial Intelligence: A Modern Approach, Russell S.J., Norvig P., Prentice Hall, New Jersey, 2010
- 3. Handbook Of Research On Machine Learning Applications and Trends: Algorithms, Methods and Techniques, Olivas E.O. et al. (eds), IGI Global, 2010
- 4. Intelligent Systems for Engineers and Scientists. Third Edition, Hopgood A.A., CRC Press, 2011
- 5. Logic, Programming and Prolog, Nilsson U., Małuszyński J., 2 ed, 2000

Additional bibliography:

- 1. Artificial Intelligence: A New Synthesis, Nilsson N.J., Morgan Kaufmann Publ., 1998
- 2. Concepts, Techniques, and Models of Computer Programming, Roy P. van, Haridi S., MIT Press, Cambridge, 2004
- 3. Programming in Prolog. Fifth Edition, Clocksin W.F., Mellish C.S., Springer-Verlag, 2003
- 4. Systematic Introduction to Expert Systems, Puppe F., Springer-Verlag, 1993

Result of average student's workload

Activity	Time (working hours)
1. Lectures	16
2. Labs	12
3. Consultations and the exam	22
4. Preparation to labs, preparing the reports	38
5. Preparation to the exam	37

Student's workload

Source of workload	hours	ECTS
Total workload	125	5
Contact hours	50	3
Practical activities	50	2